Energetics of protein–DNA interactions

نویسندگان

  • Jason E. Donald
  • William W. Chen
  • Eugene I. Shakhnovich
چکیده

Protein-DNA interactions are vital for many processes in living cells, especially transcriptional regulation and DNA modification. To further our understanding of these important processes on the microscopic level, it is necessary that theoretical models describe the macromolecular interaction energetics accurately. While several methods have been proposed, there has not been a careful comparison of how well the different methods are able to predict biologically important quantities such as the correct DNA binding sequence, total binding free energy and free energy changes caused by DNA mutation. In addition to carrying out the comparison, we present two important theoretical models developed initially in protein folding that have not yet been tried on protein-DNA interactions. In the process, we find that the results of these knowledge-based potentials show a strong dependence on the interaction distance and the derivation method. Finally, we present a knowledge-based potential that gives comparable or superior results to the best of the other methods, including the molecular mechanics force field AMBER99.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological Applications of Isothermal Titration Calorimetry

     Most of the biological phenomena are influenced by intermolecular recognition and interaction. Thus, understanding the thermodynamics of biomacromolecule ligand interaction is a very interesting area in biochemistry and biotechnology. One of the most powerful techniques to obtain precise information about the energetics of (bio) molecules binding to other biological macromolecules is isoth...

متن کامل

Mechanism of Calf thymus DNA radioprotection by sucrose: A combined effect of scavenging action and altered water

Background: Development of safe radioprotector is a challenging task. In this study radioprotective effect of sucrose has been demonstrated in calf thymus DNA (CtDNA). Sucrose is a free radical scavenger and also acts as osmolyte and therefore can influence the water activity around DNA and effects of radiation on DNA. Hoechst 33258 was used to probe the possible alteration in physicochemical p...

متن کامل

Energetics of ion-protein interactions

In keeping with the goals of our laboratory, efforts in this thesis are directed towards improving our understanding, and therefore our ability to calculate, the energetics of protein-ligand interactions. Electrostatic contributions to protein-ligand binding events are poorly understood, and underrepresented in data sets used to parameterize the energetics of protein unfolding and binding. Ther...

متن کامل

A Biophysical Approach to Predicting Protein-DNA Binding Energetics.

Sequence-specific interactions between proteins and DNA play a central role in DNA replication, repair, recombination, and control of gene expression. These interactions can be studied in vitro using microfluidics, protein-binding microarrays (PBMs), and other high-throughput techniques. Here we develop a biophysical approach to predicting protein-DNA binding specificities from high-throughput ...

متن کامل

Protein-facilitated base flipping in DNA by cytosine-5-methyltransferase.

DNA methylation, various DNA repair mechanisms, and possibly early events in the opening of DNA as required for transcription and replication are initiated by flipping of a DNA base out of the DNA double helix. The energetics and structural mechanism of base flipping in the presence of the DNA-processing enzyme, cytosine 5-methyltransferase from HhaI (M.HhaI), were obtained through molecular dy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007